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10 Mathematics and the real world

In school mathematics teaching, real-world contexts may be used to help pupils understand 
abstract ideas as well as how they can be applied. Some of these contexts are the same as those 
that are also studied in school science. This section looks at such overlaps, in particular those 
related to the fundamental quantities of mass, length and time.

10.1 Mass and weight
In everyday life, it is quite common to talk about the weights of things measured in grams (g) 
or kilograms (kg). These are the units shown on familiar items such as kitchen scales or 
bathroom scales, and it is usual to think of these as devices for weighing things.

In science, however, an important distinction is made between the mass of an object and the 
weight of an object: the kilogram is a unit of mass, and weights are measured in newtons (N). 
It is not that science is correct and everyday language is wrong, but that words are used in 
different ways in different contexts. Pupils need to understand these differences.

Weight may be the more intuitive concept – heavy objects weigh a lot and are hard to lift up. 
Weight can be defined scientifically as the gravitational force exerted on an object, and most 
pupils know that things weigh less on the Moon than on Earth because there is ‘less gravity’. 
However, if an object is taken from the Earth to the Moon, there is still the same amount of 
‘stuff’ or matter in it, even if it weighs less; its mass is a measure of the amount of matter in 
the object.

Why is this distinction important in science? The following two equations illustrate 
the difference:

kinetic energy   ½mv2 (where m   mass and v   velocity)
weight   mg (where m   mass and g   gravitational field strength)

Kinetic energy depends only on an object’s mass and velocity. For example, an object of mass 2 kg 
travelling at 3 m/s has a kinetic energy of 9 J (½  2 kg  (3 m/s)2). Its kinetic energy is 9 J 
whether it is travelling on Earth, on the Moon or in space, since its mass is the same in all of 
these places.

The weight of an object depends on the gravitational field strength. The value of this is 
slightly different in different places on the Earth (e.g. in Birmingham it is 9.817 N/kg 
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and in Los Angeles it is 9.796 N/kg), but the average is about 9.81 N/kg. On the Moon, 
it is much less, at about 1.63 N/kg. A person with a mass of 75 kg would have a weight 
on Earth of about 736 N (75 kg  9.81 N/kg) but a smaller weight on the Moon of about 
122 N (75 kg  1.63 N/kg).

Although the weight of this 75 kg person would be slightly different in different places on 
Earth, the difference is very small (e.g. about 1.002 times heavier in Birmingham than Los 
Angeles). It is therefore convenient to assume that the gravitational field strength is constant 
across the Earth, and to treat the weight of an object as being proportional to its mass.

This is the justification for the everyday practice of talking about weights measured in 
kilograms. It would sound odd and out of place in a shop to talk about ‘finding the mass’ of 
some apples rather than ‘weighing them’. However, in the school science laboratory, pupils 
using a balance calibrated in grams should always talk of it as measuring mass.

In school mathematics, it is common to see the term mass used in its scientific sense, but 
it is possible that pupils may come across books and resources that use the term weight in 
its everyday sense. In science, it is essential to understand the distinction between mass and 
weight, as well as being aware of how the terms may be used outside the science classroom.

10.2 Length, area and volume
In mathematics lessons, pupils are likely to have learnt about calculating areas and volumes 
for a variety of two-dimensional and three-dimensional shapes, including the use of units 
and how to convert from one unit to another. In 11–16 science, pupils also come across 
calculations of areas and volumes, though for a more limited range of shapes.

For two-dimensional shapes, the following formulae are used to calculate the areas of a 
rectangle, a square (the special case of a rectangle with equal sides), and a right-angled triangle:

area of a rectangle   a  b (where a and b are the lengths of the sides)

area of a square   a2 (where a is the length of the side)

area of a right-angled triangle   ½bh (where b is the base and h is the height)

When calculating the area of a rectangle, the units of 
the length for each side should be the same. Common 
units of measurement of length are millimetres (mm), 
centimetres (cm), metres (m) and kilometres (km). The 
corresponding units of area are square millimetres (mm2), 
square centimetres (cm2), square metres (m2) and square 
kilometres (km2).

The area of a rectangle of 2 cm by 3 cm is 6 cm2. What is 
this area expressed in square millimetres (mm2)? An easy 
mistake to make is to think that, since 1 cm 10 mm, 6 cm2

60 mm2. Figure 10.1 makes the point that a square with 
a side of 1 cm contains 100 (10  10) squares with a side of 
1 mm. Thus, 6 cm2 600 mm2.

Similarly, in 1 m2 there are 10 000 cm2 (100 cm  100 cm), 
and in 1 km2 there are 1 000 000 m2 (1000 m  1000 m).

Figure 10.1 An area of 1 cm
2
 

equals 100 mm
2
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For three-dimensional shapes, the following formulae are used to calculate the volumes of a 
cuboid (a shape for which each face is a rectangle) and a cube (the special case of a cuboid 
with equal sides):

volume of a cuboid   a  b  c (where a, b and c are the lengths of the sides)

volume of a cube   a3 (where a is the length of the side)

When calculating the volume of a cuboid, the units of the length for each side should be the 
same. Common units of volume are cubic millimetres (mm3), cubic centimetres (cm3), cubic 
decimetres (dm3) and cubic metres (m3).

In everyday life, the volumes of liquids, 
such as milk or soft drinks, are usually given 
in millilitres (ml) or litres (l). These units 
are still encountered in science for liquid 
measurement, though their use is historical. 
The accepted units are cubic centimetres 
(1 cm3 1 ml) and cubic decimetres 
(1 dm3 1 l). As the name suggests, there 
are 1000 millilitres in 1 litre; Figure 10.2 
illustrates that in 1 dm3 there are 1000 cm3 
(10 cm  10 cm  10 cm).

Similarly, in 1 m3 there are 1000 dm3 
(10 dm  10 dm  10 dm), and 
1 000 000 cm3 (100 cm  100 cm  100 cm).

Pupils should understand that the dimensions 
of the unit indicate what quantity is being 
measured; for example, cm2 (two dimensions) is a measure of area while mm3 (three dimensions) 
is a measure of volume.

10.3 Scale factor, cross-sectional area and surface area
A scale drawing is one in which all of the dimensions of the original object are multiplied by 
a constant scale factor. (Scale factors are discussed in Section 5.9 Scale drawings and images 
on page 48.) For example, in Figure 10.3a, a rectangle with sides of 1 cm and 2 cm has an 
area of 2 cm2. Re-drawing this with a scale factor of 2 (i.e. doubling the length of each side, 
called the linear dimensions) gives a rectangle with sides of 2 cm and 4 cm and an area of 
8 cm2. Doubling the linear dimensions increases the area not by 2 but by 4 times. (The scale 
factor is 2, so the area changes by 22 times.)

Similarly for a three-dimensional object, doubling the linear dimensions does not 
result in a simple doubling of the volume. Figure 10.3b shows a cuboid of dimensions 
1 cm  1 cm  2 cm, giving a volume of 2 cm3. Doubling the linear dimensions of the object 
gives a volume of 16 cm3 (2 cm  2 cm  4 cm). Thus, doubling the linear dimensions 
increases the volume not by 2 but by 8 times. (The scale factor is 2, so the volume changes by 
23 times.)

Figure 10.2 A volume of 1 dm
3
 equals 1000 cm
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Figure 10.3 Effects of scaling
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In summary, when an object is scaled:

change in the linear dimensions  scale factor

change in the area  (scale factor)2

change in the volume  (scale factor)3

The examples given in Figure 10.3 relate to a doubling of the linear dimensions (a scale 
factor of 2) but the same principles apply to other scale factors. For example, if the linear 
dimensions are trebled (a scale factor of 3) then the area increases by 9 times (32) and the 
volume increases by 27 times (33).

These scaling effects are important in many areas of science, particularly biology. For 
example, it explains why the legs of an elephant are much thicker relative to its body size than 
those of a mouse. Figure 10.4 shows how doubling the linear dimensions of a cuboid affects 
its volume and its cross-sectional area. The volume increases 8 times, but the cross-sectional 
area only 4 times.

Figure 10.4 Cross-sectional area and scaling
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The strength of an animal’s legs is related to their cross-sectional area, while the weight of the 
animal is related to its volume. If a mouse were to be scaled up in size, its legs would not be 
strong enough to support its weight. It is because weight increases faster than strength that an 
elephant’s legs are relatively much thicker.

Another similar example is the limit placed on the size of a biological cell. The surface area 
of a cell must be sufficient for substances to diffuse into and out of the cell fast enough. 
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Figure 10.5 shows the effect of doubling the size of a cuboid on its volume and on its surface 

area. As in the previous example, the volume increases 8 times, but the surface area only 
4 times.

This idea is usefully expressed in terms of the surface area : volume ratio. Since the change 
in the area is proportional to (scale factor)2 and the change in the volume is proportional 
to (scale factor)3, this means that the change in the surface area : volume ratio is inversely 
proportional to the scale factor. That is, doubling the linear dimensions leads to a halving of 
the surface area : volume ratio.

If a biological cell is scaled up in size, its surface area : volume ratio gets smaller, and it is this 
that puts a limit on the size of a cell. Substances are not able to move in and out through the 
surface of the cell fast enough for its volume.

Figure 10.5 Effect of size on surface area : volume ratio
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The surface area : volume ratio is also affected by the shape of an object. If you have eight 
cubes each of 1 cm3, there are various ways of arranging them. Whichever way they are 
arranged, they always have the same total volume (8 cm3) but the surface areas may be 
different. To have the smallest surface area, they need to be arranged in a cube (2  2  2), 
as shown on the left of Figure 10.6. Counting the number of squares on each face shows 
that this has a total surface area of 24 cm2. The arrangement with the largest surface area 
(8  1  1) is shown on the right. This has a surface area of 32 cm2.
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Figure 10.6 Effect of shape on surface area : volume ratio

An example of this in the real world is how to keep warm in cold conditions. It is better to 
try to roll up into a ball, thus reducing your surface area from which heat can escape. (Note 
that a sphere has a smaller surface area than a cube of the same volume. A sphere is the shape 
that has the smallest possible surface area : volume ratio.)

Human perception is not good at comparing the volumes of objects. The drawing in 
Figure 10.7 represents two objects, the second of which is twice the volume of the first. It is 
not easy to judge this by eye. Talking about ‘doubling the size of an object’ is ambiguous if it 
is not made clear whether this is referring to the linear dimensions, the area or the volume.

Figure 10.7 It is difficult to compare the volumes of objects

On a bar chart it is relatively easy to compare the sizes of the bars because we only need to 
pay attention to the length of the bars. Some ‘informal’ graphical displays replace the bars 
with different sized 3D representations of an object that are related to the quantity being 
plotted (pictograms). For example, electricity consumption may be represented by different 
sized light bulbs. Because of the difficulties in making the comparisons, such displays can 
be misleading (and indeed may sometimes be used to mislead deliberately). Using 3D 
representations in bar charts is best avoided.

10.4 Circles and spheres
Modelling biological aspects of the world using squares and cubes may be convenient, but in 
nature such shapes are less common than circles and spheres. However, calculations involving 
these (which always involve π) are not so easy to handle and are not much used in 11–16 
science, though pupils should be familiar with the formulae for doing such calculations from 
their mathematics lessons.

Mathematically, a circle and a sphere are defined in terms of the set of points that are a 
fixed distance (the radius) from the centre. However, for a real object, such as a coin or a 
ball bearing, it is the diameter that is more easily measured. So, while in mathematics the 
formulae used are usually based on the radius, in science the context determines whether it is 
more useful to use radius or diameter.

In the following formulae, the letter r represents the radius:

diameter of a circle   2r

circumference of a circle   2πr
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area of a circle   πr2

surface area of a sphere   4πr2

volume of a sphere    4
3 πr3

An important point about such formulae is that the power to which r is raised (r, r2 or r3) is a 
clue to the nature of what is being calculated:

• the diameter and circumference of a circle are linear dimensions and are proportional 
to r

• the area of a circle and the surface area of a sphere are proportional to r2

• the volume of a sphere is proportional to r3.

These relationships mean that scaling effects are the same for a sphere as for a cube so, in 
terms of modelling, a cube is just as good a shape as a sphere. In fact, since cubes can be 
stacked together into different shapes in a way that spheres cannot, they are more useful in 
modelling scaling effects.

10.5 Scalars and vectors: distance and displacement
Some quantities have both a size and a direction. A force is an example – its size can be 
measured in newtons (N), and it also acts in a particular direction. It is called a vector 
quantity. Other quantities, such as volume, have a size but no direction and are called 
scalar quantities.

This distinction, between vector and scalar quantities, arises when thinking about the 
movement of things from one place to another. For example, imagine you walk the path as 
illustrated in Figure 10.8.

Figure 10.8 A simple path

A: 100 metres South

B: 200 metres East

C: 100 metres North

100 m 100 m 

200 m

There are two ways of thinking about how far you have gone. The first is to think about the 
length of the path you have walked – in total, 400 metres (100 metres 200 metres  
100 metres). The second is to think about how far you have ended up from where you 
started. This is shown by the dotted line: 200 metres East of the start.

The scientific terms for these two ways of expressing how far you have gone are distance 
and displacement:

• Distance: This is a scalar quantity. It has a size but no direction. For example, the 
distance for part A of the journey is 100 metres. The total distance for the whole 
journey (400 metres) can be found by adding the values of the distances for each part 
of the journey together.

• Displacement: This is a vector quantity. It has both a size and a direction. For 
example, the displacement for part A of the journey is 100 metres South. Finding the 
displacement for the whole journey (200 metres East) involves more than just adding 
the sizes together, since the direction needs to be taken into account.
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Adding displacements together gets even more complicated if they can be at any angle to 
each other, not just right angles. This involves using trigonometry (sines, cosines, and so on). 
This kind of addition of vectors is important in post-16 physics but, for 11–16 science, 
calculations on vector addition are made simple by only working in one dimension. However, 
pupils at this level may be expected to know how to represent the addition of vectors 
graphically, by making scale drawings of situations involving forces.

Figure 10.9 shows an example of vectors in one dimension. It shows displacements for 
various locations relative to a person’s home (shown as 0 m). In this diagram, displacements 
to the right are indicated by a ‘plus’ sign, and those to the left by a ‘minus’ sign (rather 
than using terms like East and West to indicate direction). This is a very commonly 
used convention.

Figure 10.9 Displacements in one dimension

park home cinema shop 

−100 m 0 m +50 m +150 m

Thus, travelling from home to the shop is a displacement of 50 m, and travelling from the 
shop to the cinema is a further displacement of 100 m. To go from the shop to the park is 
a total distance of 150 m, and as this is in the left direction, the displacement is 150 m (i.e. 
negative). Going in the opposite direction, from the park to the shop, is the same distance 
(150 m), but the displacement is 150 m (i.e. positive). In order to be able to manipulate 
such vectors, pupils need to know how to add and subtract positive and negative numbers 
(see Section 9.3 Operations and symbols on page 90).

Note that, although working in one dimension makes things simpler, it also means that 
the vector/scalar distinction is more subtle. The only difference between a distance and a 
displacement is whether or not there is a sign (  or  ) in front of the value. For movement 
in two or three dimensions, the differences are more obvious, as the direction is stated in 
full. However, using the terms distance and displacement correctly is essential. If not, it leads 
to confusion when it comes to doing calculations and drawing graphs. Unfortunately, this 
distinction is not always made sufficiently clear.

10.6 Movement of objects: speed and velocity
The speed of a moving object is defined as the distance it travels in unit time, and the 
formula is:

distancespeed  
time

Since distance is a scalar quantity (i.e. it does not have a direction), speed is also a scalar 
quantity. The term for speed in a particular direction is velocity – this is a vector quantity and 
is found from this formula:

displacementvelocity  
time

As its name suggests, the speedometer on a car measures speed. A car going at a constant 
speed along a straight motorway is also moving at a constant velocity, since its direction stays 
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the same. However, if it goes round a corner at a constant speed (so that the reading on the 
speedometer stays the same), its velocity is not constant. The velocity is continually changing 
around a corner since its direction is changing.

The formulae for speed and velocity can be rearranged to give the following two equations:

distance   speed  time

displacement   velocity  time

The equations both have the form y  mx. The first of these equations shows that, if we plot 
a line graph of distance against time for a moving object, the gradient of the line is its speed. 
Similarly, the second equation shows that if we plot a line graph of displacement against time for 
an object moving in one dimension, the gradient of the line is its velocity. Such graphs are very 
useful for showing the behaviour of a moving object, and will be illustrated with an example.

Figure 10.10 shows the journey of a cyclist who travels from home to the cinema, then to the 
park and back home. (Since the three places are in a straight line it is a one-dimensional journey.) 
Note that the total distance that the cyclist travels is 500 m (150 m 250 m  100 m); however, 
the total displacement is zero, because the cyclist ends up in the same place as at the start.

Figure 10.10 A one-dimensional journey
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−100 m 0 m +150 m 

velocity = +2 m/s 

velocity = −5 m/s 
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Figure 10.11a shows a distance–time graph for this journey. The gradients for each line 
segment indicate the speeds for each part of the journey. The cyclist starts slowly, then speeds 
up for the second part, and slows down a little at the end. Note that on a distance–time graph, 
the value for the distance must always get larger over time (you cannot ‘undo’ the distance 
travelled), so the gradient of the line is never negative (i.e. it never slopes downwards).

Figure 10.11b shows a displacement–time graph for the journey. Although the journey 
is the same, the appearance of the graph is very different. Here, the gradients for each line 
segment indicate the velocities for each part of the journey. Initially, the velocity is positive 
(the gradient is positive and slopes upwards), but then the velocity becomes negative (the 
gradient is negative and slopes downwards). In other words, the cyclist changes direction. 
After another change in direction, the velocity is positive again and the final value of the 
displacement is zero (the cyclist is home).

Although the term ‘displacement–time graph’ is common in school science, strictly speaking, 
such a graph cannot be drawn since displacement is a vector. A graph cannot show both the 
size and direction of a quantity. What is called a ‘displacement–time graph’ actually shows how 
the size of the component in a chosen direction of the displacement of an object changes over time. 
Such graphs are useful only for objects moving in a straight line. A similar point also applies to 
what are called ‘velocity–time graphs’ (discussed below), since velocity is also a vector.
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In mathematics, the displacement here might be referred to as the ‘distance of the cyclist 
from home’, but for a one-dimensional journey these are essentially the same. At the end 
of the journey, the cyclist’s distance from home is zero, and the graph would still have the 
same shape.

In summary, plotting distance and displacement on a graph can show how these quantities 
change over time. The rate of change of distance is speed, and the rate of change of 
displacement is velocity. It is also possible to plot speed and velocity on a graph to see how 
these change over time as well.

Figure 10.11 The same journey represented in different ways
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(c) Speed–time graph (d) Velocity–time graph
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Figure 10.11c shows a speed–time graph, again for the same journey. It shows that, for each 
of the three stages, the cyclist was travelling at different constant speeds, i.e. each of the lines 
is horizontal. Figure 10.11d shows a velocity–time graph. This also shows three horizontal 
lines representing constant velocities for each of these stages. The difference here is that the 
second of these lines is below the horizontal axis, indicating that the velocity is negative. 

10.7 Gradients of lines on speed–time and velocity–time graphs
The gradient of a line on a speed–time graph or a velocity–time graph indicates the rate 
at which the speed or velocity is changing. This is called acceleration. The graphs shown in 
Figure 10.11 are idealised and do not represent what a real journey would look like, since 
the changes in speed or velocity happen in zero time. The lines on the graph are vertical: this 
implies that the acceleration is infinitely large.

A more realistic situation to illustrate the meaning of acceleration is a ball being thrown 
vertically upwards from the ground and then falling back down to the ground. The change 
in the ball’s height with time is show in Figure 10.12. The changing gradient tells us that, as 
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the ball gets higher, it gets slower and slower until it reaches its maximum height; it then gets 
faster and faster until it reaches the ground.

Figure 10.12 A ball thrown vertically upwards
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Strictly speaking, acceleration is the rate of change of velocity (i.e. it is a vector quantity), and 
can be calculated using the formula:

change in velocityacceleration  
time

However, in school science, it is also commonly used to mean the rate of change of speed 
(i.e. a scalar quantity). Because the same word is used to mean two different things, it is 
important that the context makes it clear whether it is referring to the rate of change of speed 
or of velocity. A helpful way of making this difference explicit is to talk of a scalar acceleration 
(rate of change of speed) or a vector acceleration (rate of change of velocity).

Figure 10.13 shows a speed–time graph and a velocity–time graph for the ball thrown upwards.

Figure 10.13 Representing speed and velocity for a ball thrown vertically upwards

(a) Speed–time graph (b) Velocity–time graph
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The speed–time graph in Figure 10.13a shows that the ball’s speed constantly decreases 
until it reaches zero (the maximum height) and then steadily increases; in other words, it 
decelerates and then accelerates. The gradient of the graph represents a scalar acceleration: for 
the first part it is negative (the ball is slowing down, or decelerating) and for the second part it 
is positive (the ball is getting faster, or accelerating).

Note that, while it is useful to talk about an object accelerating or decelerating, the term 
deceleration is better avoided, since only the term acceleration represents a quantity with a value.

The velocity–time graph in Figure 10.13b uses the convention that positive values of velocity 
mean ‘going up’ and negative values mean ‘going down’ (values of displacement are taken as 
positive above ground and negative below it). Here, the gradient has the same negative value 
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throughout – it represents a constant vector acceleration in the downwards direction. The 
velocity starts with a positive value, decreases until it becomes zero, and continues to decrease 
when it becomes negative. 

Thus, the meaning of a positive or negative acceleration depends on the way the term is 
being used.

• Scalar acceleration: A positive acceleration means getting faster; a negative acceleration 
means getting slower.

• Vector acceleration: The sign (i.e. direction) of the acceleration on its own gives no 
indication whether the ball is getting faster or slower – it depends on the direction of 
the velocity. An acceleration in the same direction as the velocity (both positive or both 
negative) means getting faster; an acceleration in a different direction to the velocity 
(one is positive, the other negative) means getting slower.

10.8 Area under the line on speed–time and velocity–time graphs
On a graph showing a rate of change against time, the area under the line is meaningful 
(see Section 9.13 Graphs of rates against time: area under the line on page 105). For a 
speed–time graph, the vertical axis represents the rate of change of distance (speed) and the 
horizontal axis represents time. The area under the line then represents distance. Figure 10.14a 
shows the speed–time graph with the areas for each stage of the journey marked. The area 
of ‘A’ is 2 m/s  75 s. This gives 150 m – the distance travelled in this stage of the journey. 
Calculating the areas of ‘B’ and ‘C’ and then adding all the areas together will give the total 
distance travelled.

In a similar way, displacement can be found by adding together the areas on a velocity–time 

graph. However, in this case, since velocity can have both positive and negative values, so too 
can the areas. In Figure 10.14b, the areas of ‘A’ and ‘C’ are positive, but ‘B’ is negative (it is 
below the horizontal axis). Since for this journey the displacement is zero, the two areas on 
this graph above the line are equal to the area below, and when they are all added together the 
total area is zero. 

Figure 10.14 Using areas to find distance or displacement

(a) Distance from a speed–time graph (b) Displacement from a velocity–time graph
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The area under the line on a distance–time graph (distance  time) does not have any real-
world meaning, and the same applies to the area under the line on a displacement–time 
graph (displacement  time). Thus, while the gradients of the lines on the four graphs shown 
in Figure 10.11 all have a real-world meaning, the areas under the line are meaningful only for 
the speed–time and velocity–time graphs.


